如图1,在等腰直角三角形中,,,分别是上的点,,
为的中点.将沿折起,得到如图2所示的四棱锥,其中.
(Ⅰ) 证明:平面;
(Ⅱ) 求二面角的平面角的余弦值.
某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值;
(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间名工人中有几名优秀工人;
(Ⅲ) 从该车间名工人中,任取人,求恰有名优秀工人的概率.
已知函数,.
(Ⅰ) 求的值;
(Ⅱ) 若,,求.
如图,是圆的直径,点在圆上,延长到使,过作圆的切线交于.若,,则_________.
已知曲线的参数方程为(为参数),在点处的切线为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,则的极坐标方程为_____________.
给定区域:,令点集是在上取得最大值或最小值的点,则中的点共确定______条不同的直线.