设为数列的前n项和,则
(1)_____;
(2)___________。
设是双曲线的两个焦点,P是C上一点,若且的最小内角为,则C的离心率为___。
设a,b,c均为正数,且a+b+c=1,证明:
(Ⅰ)ab+bc+ac;
(Ⅱ)
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,
且BCAE=DCAF,B、E、F、C四点共圆.
(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.
已知函数f(x)=-ln(x+m).
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明f(x)>0.
平面直角坐标系xOy中,过椭圆M:右焦点的直线交于A,B两点,P为AB的中点,且OP的斜率为.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值