过抛物线的焦点F作斜率分别为的两条不同的直线,且,相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为。
(I)若,证明;;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。
在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径成为M到N的一条“L路径”。如图所示的路径都是M到N的“L路径”。某地有三个新建的居民区,分别位于平面xOy内三点处。现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心。
(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度值和最小。
如图,在直棱柱
(I)证明:;
(II)求直线所成角的正弦值。
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望。
已知函数。
(I)若是第一象限角,且。求的值;
(II)求使成立的x的取值集合。
设函数
(1)记集合,则所对应的的零点的取值集合为____。
(2)若 .(写出所有正确结论的序号)
①
②
③若