已知函数.
(1)求证:;
(2)解不等式
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.
(1)求直线的极坐标方程;
(2)若直线与曲线相交于、两点,求.
已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)若经过点可以作出曲线的三条切线,求实数的取值范围.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切的圆方程.
如图,在直三棱柱中,,是中点.
(I)求证:平面;
(II)求点到平面的距离。
某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求高三(1)班全体女生的人数;
(2)求分数在之间的女生人数;并计算频率分布直方图中间的矩形的高;
(3)若要从分数在之间的试卷中任取两份分析女学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.