已知是虚数单位,则=
A. B. C. D.
下列表述正确的是
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.
A.①②③ B.②③④ C.②④⑤ D.①③⑤
函数的定义域是
A. B.
C. D.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知函数,若f(x)在x=1处的切线方程为3x+y-6=0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意的,都有f(x)成立,求函数g(t)的最值
已知a为实数,。
⑴求导数;
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。