已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标;
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
已知圆,直线与圆相交于两点,且A点在第一象限.
(1)求;
(2)设()是圆上的一个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线与轴分别交于和.问是否为定值?若是,求出定值,若不是,说明理由.
如图,△是等边三角形, ,,,,分别是,,的中点,将△沿折叠到的位置,使得.
(1)求证:平面平面;
(2)求证:平面.
通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:
性别与看营养说明列联表 单位: 名
|
男 |
女 |
总计 |
看营养说明 |
50 |
30 |
80 |
不看营养说明 |
10 |
20 |
30 |
总计 |
60 |
50 |
110 |
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为10的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,能否在犯错误的概率不超过0.01的前提下认为性别与是否看营养说明之间有关系?
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨。现由天气预报得知,某地在未来3天的指定时间的降雨概率是:前2天均为50%,后1天为80%.3天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.求不需要人工降雨的天数x的分布列和期望.