已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.
在矩形中,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系.已知点的坐标为,E、F为的两个三等分点,和交于点,的外接圆为⊙.
(1)求证:;
(2)求⊙的方程;
(3)设点,过点P作直线与⊙交于M,N两点,若点M恰好是线段PN的中点,求实数的取值范围.
已知中,是的中点,,设内角A,B,C所对边的长分别为a,b,c,且.
(1)求角A的大小;
(2)若角求的面积;
(3)求面积的最大值.
已知函数,.
(1)若,求证:函数是上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.
已知集合,,.
(1)当时,求;
(2)若,求实数的取值范围.
有个小球,将它们任意分成两堆,求出这两堆小球球数的乘积,再将其中一堆小球任意分成两堆,求出这两堆小球球数的乘积,如此下去,每次都任选一堆,将这堆小球任意分成两堆,求出这两堆小球球数的乘积,直到不能再分为止,则所有乘积的和为 .