某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
1 |
2 |
3 |
4 |
5 |
|
0.4 |
0.2 |
0.2 |
0.1 |
0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(Ⅰ)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;
(Ⅱ)求的分布列及期望与方差D
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角;
(Ⅲ)求面与面所成二面角的大小。
A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个方案试验成功的概率是0.36.
(1)求两个方案均获成功的概率;
(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望.
在二项式的展开式中,
(Ⅰ)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;
(Ⅱ)若前三项的二项式系数和等于79,求展开式中系数最大的项.
已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.
在矩形中,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系.已知点的坐标为,E、F为的两个三等分点,和交于点,的外接圆为⊙.
(1)求证:;
(2)求⊙的方程;
(3)设点,过点P作直线与⊙交于M,N两点,若点M恰好是线段PN的中点,求实数的取值范围.