用反证法证明:如果,那么。
在关于人体脂肪含量(百分比)和年龄关系的研究中,得到如下一组数据
年龄 |
23 |
27 |
39 |
41 |
45 |
50 |
脂肪含量 |
9.5 |
17.8 |
21.2 |
25.9 |
27.5 |
28.2 |
(Ⅰ)画出散点图,判断与是否具有相关关系;
(Ⅱ)通过计算可知,
请写出对的回归直线方程,并计算出岁和岁的残差.
设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).
(1)求方程有实根的概率;
(2)求的分布列和数学期望;
(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.
已知为偶函数,曲线过点(2,5), .
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.
一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.
(1)求这名学生在途中遇到红灯的次数ξ的分布列;
(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;
(3)这名学生在途中至少遇到一次红灯的概率.
为了解学生身高情况,某校以10%的比例对全校700名学生按性
别进行分层抽样调查,测得身高情况的统计图如下:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185㎝之间的概率;
(3)从样本中身高在165~180㎝之间的女生中任选2人,求至少有1人身高在170~180㎝之间的概率;