已知函数.
(1)当时,证明:在上为减函数;
(2)若有两个极值点求实数的取值范围.
在某校组织的一次篮球定点投篮测试中,规定每人最多投次,每次投篮的结果相互独立.在处每投进一球得分,在处每投进一球得分,否则得分. 将学生得分逐次累加并用表示,如果的值不低于分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在处投一球,以后都在处投;方案2:都在处投篮.甲同学在处投篮的命中率为,在处投篮的命中率为.
(Ⅰ)甲同学选择方案1.
求甲同学测试结束后所得总分等于4的概率;
求甲同学测试结束后所得总分的分布列和数学期望;
(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.
已知函数,
(1) 当时,求曲线在处的切线方程;
(2)求函数的单调区间.
有一枚正方体骰子,六个面分别写1、2、3、4、5、6的数字,规定“抛掷该枚骰子得到的数字是抛掷后,面向上的那一个数字”.已知和是先后抛掷该枚骰子得到的数字,函数
(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,使函数有零点的概率;
(2)求函数在区间(-3,+∞)上是增函数的概率.
已知定义在上的函数,其中为常数.
(1)若是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求的取值范围.
对于函数,有下列说法:
①该函数必有两个极值点;
②该函数的极大值必大于1;
③该函数的极小值必小于1;
④该函数必有三个不同的零点
其中正确结论的序号为 .(写出所有正确结论序号)