如图,不规则四边形ABCD中:AB和CD 是线段,AD和BC是圆弧,直线l⊥AB与E,当l从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设AE=x,则左侧部分面积y 是关于x的函数,其大致图象为
已知函数
(1)当时,求函数在上的最大值和最小值;
(2)讨论函数的单调性;
(3)若函数在处取得极值,不等式对恒成立,求实数的取值范围。
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
已知函数( )
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程恰有两个不相等实根的概率;
(2)若从区间中任取一个数,从区间中任取一个数,求方程没有实根的概率.
(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程; (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
(本题12分)在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证:平面ABCD;
(2)求二面角E—AC—D的正切值.