(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.
(11分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(11分)已知函数f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值; (2)问a为何值时,函数的最小值是-4。
(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4。现从盒子中随机抽取卡片.
(I)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;
(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
四个函数,,,,,,中,在区间上为减函数的是_________.
已知函数,如果=那么 (填上“>”,“=”或“<”).