在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
编号 |
1 |
2 |
3 |
4 |
5 |
成绩 |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学的成绩,及这6位同学成绩的标准差;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)求线性回归方程所表示的直线必经过的点;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
并预测生产1000吨甲产品的生产能耗多少吨标准煤?
(参考:)
下表提供了某工厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据。
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤。试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
图中给出的是用条件语句编写的一个伪代码,该伪代码的功能是________.
某个容量为的样本的频率分布直方图见右图,则在区间上的数据的频数为 .
一个算法如下:
第一步:取值取值;
第二步:若不大于,则执行下一步;否则执行第六步;
第三步:计算且将结果代替;
第四步:用结果代替;
第五步:转去执行第二步;
第六步:输出则运行以上步骤输出的结果为 .