设为抛物线 ()的焦点,为该抛物线上三点,若,且
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,)其中,过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为.若,求的值.
如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥, .
(Ⅰ)求证:平面⊥平面;
(Ⅱ)若二面角的余弦值为,求.
某班同学在“十八大”期间进行社会实践活动,对[25,55]岁的人群随机抽取人进行了一次当前投资生活方式----“房地产投资”的调查,得到如下统计和各年龄段人数频率分布直方图:
(Ⅰ)求n,a,p的值;
(Ⅱ)从年龄在[40,50)岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[40,45)岁的人数为,求的分布列和期望.
设等比数列{}的前项和为,已知对任意的,点,均在函数的图像上.
(Ⅰ)求的值;
(Ⅱ)记求数列的前项和.
在中,角所对的边分别为满足,
,,则的取值范围是 .
下列命题中正确的是 .(填上你认为所有正确的选项)
① 空间中三个平面,若,则∥;
② 若为三条两两异面的直线,则存在无数条直线与都相交;
③ 球与棱长为正四面体各面都相切,则该球的表面积为;
④ 三棱锥中,则.