设函数,.
(1) 解不等式;
(2) 设函数,且在上恒成立,求实数的取值范围.
在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数).
(1) 求曲线的直角坐标方程以及曲线的普通方程;
(2) 设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.
设
(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.
已知集合是正整数的一个排列,函数
对于,定义:,,称为的满意指数.排列为排列的生成列.
(Ⅰ)当时,写出排列的生成列;
(Ⅱ)证明:若和为中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列,进行如下操作:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加.
如图,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称.
(Ⅰ)若点的坐标为,求的值;
(Ⅱ)若椭圆上存在点,使得,求的取值范围.
如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,为上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.
(Ⅰ)求四面体的体积;
(Ⅱ)证明:∥平面;
(Ⅲ)证明:平面平面.