如图,四棱锥中,底面,四边形中,,,,.
(Ⅰ)求证:平面平面;
(Ⅱ)设.
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.
(本小题满分12分)等差数列的各项均为正数,,前项和为,等比数列中,,,是公比为64的等比数列.
(Ⅰ)求与;
(Ⅱ)证明:.
(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一排组成.
第一排 明文字符 A B C D
密码字符 11 12 13 14
第二排 明文字符 E F G H
密码字符 21 22 23 24
第三排 明文字符 M N P Q
密码字符 1 2 3 4
设随机变量表示密码中不同数字的个数.
(Ⅰ)求; (Ⅱ)求随机变量的分布列和它的数学期望.
已知, (其中),函数,若直线是函数图象的一条对称轴.
(Ⅰ)试求的值;
(Ⅱ)若函数的图象是由的图象的各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到,求的单调递增区间.
在锐角中,角的对边分别为,若,则+的值是________.
直线与圆相交于两点,若,则 (O为坐标原点)等于________.