设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
设函数(Ⅰ)若函数在上单调递减,在区间单调递增,求的值;
(Ⅱ)若函数在上有两个不同的极值点,求的取值范围;
(Ⅲ)若方程有且只有三个不同的实根,求的取值范围。
已知数列的前n项和为,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,数列的前n项和为,若不等式对任意恒成立,求实数的取值范围.
如图,在直角梯形中,,∥,,,将沿折起,使平面平面,得到几何体,如图2所示.
(Ⅰ)求证:平面;
(Ⅱ)求几何体的体积.
某同学参加省学业水平测试,物理、化学、生物获得等级和获得等级不是的机会相等,物理、化学、生物获得等级的事件分别记为、、,物理、化学、生物获得等级不是的事件分别记为、、.
(Ⅰ)试列举该同学这次水平测试中物理、化学、生物成绩是否为的所有可能结果(如三科成绩均为记为);
(Ⅱ)求该同学参加这次水平测试获得两个的概率;
(Ⅲ)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于,并说明理由.
已知向量,,,函数的最大值为.
(Ⅰ)求;
(Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求在上的值域.