在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
如图,已知矩形中,为的中点,沿将三角形折起,使.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
已知数列满足(为常数),成等差数列.
(Ⅰ)求p的值及数列的通项公式;
(Ⅱ)设数列满足,证明:.
某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数 |
0 |
1 |
2 |
3 |
人数 |
5 |
10 |
20 |
15 |
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.
如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.