在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
已知函数,,其中R.
(1)讨论的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,,总有成立,求实数的取值范围.
已知数列的前项和为,数列是公比为的等比数列, 是和的等比中项.
(1)求数列的通项公式;
(2)求数列的前项和.
如图,、为圆柱的母线,是底面圆的直径,、分别是、的中点,.
(1)证明:;
(2)证明:;
(3)求四棱锥与圆柱的体积比.
从某学校高三年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于和之间,将测量结果按如下方式分成八组:第一组.第二组; 第八组,下图是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组 别 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
样本数 |
|
|
|
|
|
|
|
|
(2)估计这所学校高三年级名学生中身高在以上(含)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
向量,,已知,且有函数.
(1)求函数的周期;
(2)已知锐角的三个内角分别为,若有,边,,求的长及的面积.