数列的项是由1或2构成,且首项为1,在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则 ; .
已知为锐角,且,则 .
如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域(图中白色部分).若在此三角形内随机取一点,则点落在区域内的概率为 .
某校高三(1)班50个学生选择选修模块课程,他们在A、B、C三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如下表:
模块 |
模块选择的学生人数 |
模块 |
模块选择的学生人数 |
A |
28 |
A与B |
11 |
B |
26 |
A与C |
12 |
C |
26 |
B与C |
13 |
则三个模块都选择的学生人数是( )
A.7 B.6 C.5 D.4
设,,其中是常数,且.
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:.
知数列的首项前项和为,且
(1)证明:数列是等比数列;
(2)令,求函数在点处的导数,并比较与的大小.