在等差数列中,,,记数列的前项和为.
(1)求数列的通项公式;
(2)是否存在正整数、,且,使得、、成等比数列?若存在,求出所有符合条件的、的值;若不存在,请说明理由.
如图, 在三棱锥中,.
(1)求证:平面平面;
(2)若,,当三棱锥的体积最大时,求的长.
某单位有、、三个工作点,需要建立一个公共无线网络发射点,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为,,.假定、、、四点在同一平面上.
(1)求的大小;
(2)求点到直线的距离.
某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:
视力数据 |
4.0 |
4.1 |
4.2 |
4.3 |
4.4 |
4.5 |
4.6 |
4.7 |
4.8 |
4.9 |
5.0 |
5.1 |
5.2 |
5.3 |
人数 |
|
|
|
|
2 |
|
2 |
|
2 |
1 |
|
1 |
|
|
(1)用上述样本数据估计高三(1)班学生视力的平均值;
(2)已知其余五个班学生视力的平均值分别为、、、、.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于的概率.
(坐标系与参数方程选做题)在极坐标系中,已知点,点是曲线上任一点,设点到直线的距离为,则的最小值为 .
在△中,是边的中点,点在线段上,且满足,延长交于点,则的值为 .