三棱锥的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为 .
为椭圆上一点,为两焦点,,则椭圆的离心率 .
若向量,则向量与的夹角的余弦值为 .
定义在上的函数,则 ( )
A.既有最大值也有最小值 B.既没有最大值,也没有最小值
C.有最大值,但没有最小值 D.没有最大值,但有最小值
已知函数
(1)当时,讨论函数的单调性:
(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.
已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.