如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC 交 BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.
已知,R
(Ⅰ)当时,解不等式;
(Ⅱ)若恒成立,求k的取值范围.
已知直线(t为参数)经过椭圆(为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|·|FB|的最大值和最小值.
如图所示,AC为的直径,D为的中点,E为BC的中点.
(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
已知函数
(Ⅰ)若在(0,)单调递减,求a的最小值
(Ⅱ)若有两个极值点,求a的取值范围.