椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足,0为坐标原点,求证为钝角.
为了调查某大学学生在周日上网的时间,随机对1OO名男生和100名女生进行了不记 名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表
表2:女生上网时间与频数分布表
(I)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(II)完成下面的2x2列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?
表3 :
如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC 交 BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.
已知,R
(Ⅰ)当时,解不等式;
(Ⅱ)若恒成立,求k的取值范围.
已知直线(t为参数)经过椭圆(为参数)的左焦点F.
(Ⅰ)求m的值;
(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|·|FB|的最大值和最小值.
如图所示,AC为的直径,D为的中点,E为BC的中点.
(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.