在直角坐标平面内,以坐标原点0为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,),曲线C的参数方程为(为参数),则点M到曲线C上的点的距离的最小值为 .
挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:
则其中:(I)L3= ;(Ⅱ)Ln= .
已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点.则:(I)y1 y2= ;(Ⅱ)三角形ABF面积的最小值是 .
点P(x,y)在不等式组表示的平面区域内,若点P(x,y)到直线的最大距离为2,则k= .
若tan=,∈(0,),则sin(2+)= .
已知直线:.若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出四条曲线方程:①;②;③;④;则其中直线的“绝对曲线”有 ( )
A.①④ B.②③ C.②④ D.②③④