如图,在各棱长均为的三棱柱中,侧面底面,.
(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.
节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段 后得到如下图的频率分布直方图.
(1)此调查公司在采样中,用到的是什么抽样方法?
(2)求这40辆小型车辆车速的众数和中位数的估计值;
(3)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在的车辆数的分布列及数学期望.
已知函数(,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和
(1)求函数的解析式;
(2)若锐角满足,求的值.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(),则直线l与曲线C相交所成的弦的弦长为______.
如图,的外接圆的切线与的延长线相交于点,的平分线与相交于点,若,,则______.
科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个数列:6,3,10,5,16,8,4,2,1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:
(1)如果,则按照上述规则施行变换后的第8项为 .
(2)如果对正整数(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则的所有不同值的个数为 .