某企业有两个生产车间,分别位于边长是的等边三角形的顶点处(如图),现要在边上的点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返车间5次,往返车间20次,设叉车每天往返的总路程为.(注:往返一次即先从仓库到车间再由车间返回仓库)
(Ⅰ)按下列要求确定函数关系式:
①设长为,将表示成的函数关系式;
②设,将表示成的函数关系式.
(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程 的最小值,并指出点的位置.
已知椭圆的离心率为,且椭圆的右焦点与抛物线的焦点重合.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)如图,设直线与椭圆交于两点(其中点在第一象限),且直线与定直线交于点,过作直线交轴于点,试判断直线与椭圆的公共点个数.
今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:
(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;
(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或抽取的人数达到4位,则停止抽取,求的分布列及数学期望.
如图,在几何体中,平面,,是等腰直角三角形,,且,点是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求与平面所成角的正弦值.
已知函数,(,.若,且函数的图像关于点对称,并在处取得最小值,则正实数的值构成的集合是 .
由直线,,曲线及轴所围成的图形的面积是 .