已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
已知函数.
(Ⅰ)求函数在上的值域;
(Ⅱ)若对于任意的,不等式恒成立,求.
某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:
赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。
(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;
从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.
已知为数列的前项和,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前n项和.
已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若恒成立,求实数的取值范围.