定义域为的函数,其导函数为.若对,均有,则称函数为上的梦想函数.
(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数(,)为其定义域上的梦想函数,求的取值范围;
(Ⅲ)已知函数(,)为其定义域上的梦想函数,求的最大整数值.
已知是中心在坐标原点的椭圆的一个焦点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设:、为椭圆上不同的点,直线的斜率为;是满足()的点,且直线的斜率为.
①求的值;
②若的坐标为,求实数的取值范围.
已知长方体中,底面为正方形,面,,,点在棱上,且.
(Ⅰ)试在棱上确定一点,使得直线平面,并证明;
(Ⅱ)若动点在底面内,且,请说明点的轨迹,并探求长度的最小值.
在数列和等比数列中,,,.
(Ⅰ)求数列及的通项公式;
(Ⅱ)若,求数列的前项和.
已知外接圆的半径为,且.
(Ⅰ)求边的长及角的大小;
(Ⅱ)从圆内随机取一个点,若点取自内的概率恰为,试判断的形状.
在某次模块水平测试中,某同学对于政治、历史、地理这三个学科每个学科是否能达到优秀水平的概率都为,记政治、历史、地理达到优秀水平的事件分别为、、,未达到优秀水平的事件分别为、、.
(Ⅰ)若将事件 “该同学这三科中恰有两科达到优秀水平” 记为,试求事件发生的概率;
(Ⅱ)请依据题干信息,仿照(Ⅰ)的叙述,设计一个关于该同学测试成绩情况的事件,使得事件发生的概率大于,并说明理由.