是虚数单位,复数,.若的虚部为,则等于( )
A.2 B.-2 C.1 D.-1
已知函数.
(I)求函数的单调区间;
(Ⅱ)若,对都有成立,求实数的取值范围;
(Ⅲ)证明:(且).
已知椭圆C:的离心率为,
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于,两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.
如图,已知多面体的底面是边长为的正方形,底面,,且.
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 |
性别 |
投篮成绩 |
2 |
男 |
90 |
7 |
女 |
60 |
12 |
男 |
75 |
17 |
男 |
80 |
22 |
女 |
83 |
27 |
男 |
85 |
32 |
女 |
75 |
37 |
男 |
80 |
42 |
女 |
70 |
47 |
女 |
60 |
甲抽取的样本数据
编号 |
性别 |
投篮成绩 |
1 |
男 |
95 |
8 |
男 |
85 |
10 |
男 |
85 |
20 |
男 |
70 |
23 |
男 |
70 |
28 |
男 |
80 |
33 |
女 |
60 |
35 |
女 |
65 |
43 |
女 |
70 |
48 |
女 |
60 |
乙抽取的样本数据
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
|
优秀 |
非优秀 |
合计 |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
已知平面向量若函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.