某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
已知平面向量a,b=,定义函数
(Ⅰ)求函数的值域;
(Ⅱ)若函数图象上的两点、的横坐标分别为和,为坐标原点,求△的面积.
数列是由集合,且,中所有的数从小到大排列成的数列,即,,,,a5=30,a6=36,…,若=,且,,则的值等于____________.
在区间上任取两个数,,能使函数在区间内有零点的概率等于________.
已知程序框图如右图所示,执行该程序,如果输入,输出,则在图中“?”处可填入的算法语句是 (写出以下所有满足条件的序号).
①;
②;
③;
④.
已知函数,则的值等于 .