满分5 > 高中数学试题 >

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,...

(13分)已知椭圆C:满分5 manfen5.com(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点满分5 manfen5.com

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且满分5 manfen5.com,求点Q的轨迹方程.

 

(I)(II)点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣) 【解析】(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点. ∴c=1,2a=PF1+PF2==2,即a= ∴椭圆的离心率e===…4分 (II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y) (1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q的坐标为(0,2﹣) (2)当直线l与x轴不垂直时,可设其方程为y=kx+2, 因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则 ,,又|AQ|2=(1+k2)x2, ∴,即=…① 将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…② 由△=(8k)2﹣24(2k2+1)>0,得k2> 由②知x1+x2=,x1x2=,代入①中化简得x2=…③ 因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18 由③及k2>可知0<x<,即x∈(﹣,0)∪(0,) 由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1, 又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈[,)且﹣1≤y≤1,则y∈(,2﹣) 所以,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)…13分
复制答案
考点分析:
相关试题推荐

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

满分5 manfen5.com

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1

(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

 

查看答案

(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生

(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);

(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.

甲的频数统计图(部分)

运行次数n

输出y的值为1的频数

输出y的值为2的频数

输出y的值为3的频数

30

14

6

10

2100

1027

376

697

乙的频数统计图(部分)

运行次数n

输出y的值为1的频数

输出y的值为2的频数

输出y的值为3的频数

30

12

11

7

2100

1051

696

353

当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;

(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.

满分5 manfen5.com

 

 

查看答案

(12分)在△ABC中,角A、B、C的对边分别a、b、c,且满分5 manfen5.com

(1)求cosA的值;

(2)若满分5 manfen5.com,求向量满分5 manfen5.com满分5 manfen5.com方向上的投影.

 

查看答案

(12分)在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项,公差及前n项和.

 

查看答案

(5分)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:

①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;

②直角三角形斜边的中点是该直角三角形三个顶点的中位点;

③若四个点A、B、C、D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.

其中的真命题是    (写出所有真命题的序号).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.