已知椭圆:的离心率为,左焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的、两点,且线段的中点在圆 上,求的值.
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110), [140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题.
(Ⅰ)求分数在[120,130)内的频率;
(Ⅱ)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为=105)作为这组数据的平均分,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
数列的前项和为,.
(Ⅰ)设,证明:数列是等比数列;
(Ⅱ)求数列的前项和.
如图,是边长为2的正方形,⊥平面,,// 且.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求几何体的体积.
已知函数,.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角、、的对边分别为、、,满足,且,求、的值.
已知函数,给出下列五个说法:
①;②若,则;③在区间上单调递增; ④将函数的图象向右平移个单位可得到的图象;⑤的图象关于点成中心对称.其中正确说法的序号是 .