设函数f(x)= ×
,其中向量
="(2cosx,1),"
=(cosx,
sin2x+m).
(1)求函数f(x)的最小正周期和f(x)在[0, p]上的单调递增区间;
(2)当xÎ[0]时,ô f(x)ô <4恒成立,求实数m的取值范围.
已知向量=(sinA,cosA),
=
,
,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值时x的集合.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.
已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
(本题满分12分)
若,且
,
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.
(本题满分12分)
已知函数(
)
(1)若从集合
中任取一个元素,
从集合
中任取一个元素,求方程
恰有两个不相等实根的概率;
(2)若从区间
中任取一个数,
从区间
中任取一个数,求方程
没有实根的概率.