某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.
已知,将直线绕点逆时针旋转得到直线,则直线 的斜率为 。
设f(x)=log()为奇函数,a为常数.
(Ⅰ)求a的值;
(Ⅱ)证明f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围.
已知函数,在同一周期内,
当时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,函数有两个零点,求实数的取值范围.
已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).
(Ⅰ)若||=||,求角α的值;
(Ⅱ)若·,求的值.
已知
(Ⅰ)若与平行,求实数的值.
(Ⅱ)若与的夹角为钝角,求实数的取值范围.