满分5 > 高中数学试题 >

已知各项均为正数的数列{an}的前n项和满足S1>1,且6Sn=(an+1)(a...

已知各项均为正数的数列{an}的前n项和满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)设数列{bn}满足manfen5.com 满分网,并记Tn为{bn}的前n项和,求证:3Tn+1>log2(an+3),n∈N*
(1)先根据题设求得a1,进而根据an+1=Sn+1-Sn整理得(an+1+an)(an+1-an-3)=0求得an+1-an=3,判断出{an}是公差为3,首项为2的等差数列,则数列的通项公式可得. (2)把(1)中的an代入可求得bn,进而求得前n项的和Tn,代入到3Tn+1-log2(an+3)中,令,进而判断出f(n+1)>f(n),从而推断出3Tn+1-log2(an+3)=log2f(n)>0,原式得证. 【解析】 (1)由,解得a1=1或a1=2,由假设a1=S1>1,因此a1=2, 又由, 得(an+1+an)(an+1-an-3)=0, 即an+1-an-3=0或an+1=-an,因an>0,故an+1=-an不成立,舍去 因此an+1-an=3,从而{an}是公差为3,首项为2的等差数列, 故{an}的通项为an=3n-1 证明:由可解得; 从而 因此 令,则、 因(3n+3)3-(3n+5)(3n+2)2=9n+7>0,故f(n+1)>f(n) 特别地,从而3Tn+1-log2(an+3)=log2f(n)>0、 即3Tn+1>log2(an+3)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax4lnx+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C-ABDA1与直三棱柱的体积之比为3:5.
(1)求异面直线DE与B1C1的距离;
(2)若BC=manfen5.com 满分网,求二面角A1-DC1-B1的平面角的正切值.

manfen5.com 满分网 查看答案
某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为manfen5.com 满分网,且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;
(2)获赔金额ξ的分别列与期望.
查看答案
设f(x)=manfen5.com 满分网
(1)求f(x)的最大值及最小正周期;
(2)若锐角α满足manfen5.com 满分网,求tanmanfen5.com 满分网的值.
查看答案
过双曲线x2-y2=4的右焦点F作倾斜角为105的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.