满分5 > 高中数学试题 >

设f(x)是R上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇...

设f(x)是R上的任意函数,则下列叙述正确的是( )
A.f(x)f(-x)是奇函数
B.f(x)|f(-x)|是奇函数
C.f(x)-f(-x)是偶函数
D.f(x)+f(-x)是偶函数
令题中选项分别为F(x),然后根据奇偶函数的定义即可得到答案. 【解析】 A中令F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x), 即函数F(x)=f(x)f(-x)为偶函数, B中F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定, C中令F(x)=f(x)-f(-x),令F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数, D中F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数, 故选D.
复制答案
考点分析:
相关试题推荐
设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )
A.1
B.3
C.4
D.8
查看答案
manfen5.com 满分网如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
查看答案
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求k值;如果不存在,请说明理由.
查看答案
设有关于x的一元二次方程x2-2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b=2,求上述方程没有实根的概率.
查看答案
设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-manfen5.com 满分网manfen5.com 满分网]的最大值和最小值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.