(1)根据Sn-Sn-1=an得到数列{an}的通项公式,同理根据Tn-Tn-1=bn得到数列{bn}的通项公式,根据a10=b10列出关于p的方程,求出p即可;
(2)根据数列{bn}的通项公式,取数列的奇数项组成新的数列也为等差数列把n=2k-1代入数列{bn}的通项公式即可得到数列{cn}的通项公式.
【解析】
(1)由已知,an=Sn-Sn-1=(n2+pn)-[(n-1)2+p(n-1)]=2n-1+p(n≥2),
bn=Tn-Tn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5(n≥2).
∴a10=19+p,b10=55.
由a10=b10,得19+p=55,
∴p=36.
(2)b1=T1=1,满足bn=6n-5.
∴数列{bn}的通项公式为bn=6n-5.
取{bn}中的奇数项,所组成的数列的通项公式为b2k-1=6(2k-1)-5=12k-11.
∴cn=12n-11.