根据图象和圆切线长定理可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|后根据双曲线的定义分P在图象的右支和左支可得
|F1M|-|F2M|=±2a,与|F1M|+|MF2|=|F1F2|=2c联立即可求出|F1M|和|MF2|,|F1M|与|F2M|的积再根据双曲线的基本性质c2-a2=b2化简得到值.
【解析】
根据从圆外一点向圆所引的两条切线长相等可知:|F1M|=|F1S|,|F2M|=|F2T|,|PS|=|PT|
①当P在双曲线图象的右支时,而根据双曲线的定义可知
|F1M|-|F2M|=|F1P|-|F2P|=2a①;
而|F1M|+|MF2|=|F1F2|=2c②,
联立①②解得:|F1M|=a+c,|F2M|=c-a,所以|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2;
②当P在双曲线图象的左支时,而根据双曲线的定义可知
|F2M|-|F1M|=|F2P|-|F1P|=2a③;
而|F1M|+|MF2|=|F1F2|=2c④,
联立③④解得:|F2M|=a+c,|F1M|=c-a,|F1M|•|F2M|=(a+c)(c-a)=c2-a2=b2.
综上,可得|F1M|•|F2M|=b2.
故答案为:b2