满分5 > 高中数学试题 >

已知圆C:x2+y2+2x-4y+3=0. (1)若圆C的切线在x轴和y轴上的截...

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
(1)当截距比为0时,根据圆C的切线在x轴和y轴的截距相等,设出切线方程x+y=a,然后利用点到直线的距离公式求出圆心到切线的距离d,让d等于圆的半径r,列出关于a的方程,求出方程的解即可得到a的值,得到切线的方程;当截距为0时,设出切线方程为y=kx,同理列出关于k的方程,求出方程的解即可得到k的值,得到切线的方程; (2)根据圆切线垂直于过切点的半径,得到三角形CPM为直角三角形,根据勾股定理表示出点P的轨迹方程,由轨迹方程得到动点P的轨迹为一条直线,所以|PM|的最小值就是|PO|的最小值,求出原点到P轨迹方程的距离即为|PO|的最小值,然后利用两点间的距离公式表示出P到O的距离,把P代入动点的轨迹方程,两者联立即可此时P的坐标. 【解析】 (1)∵切线在两坐标轴上的截距相等, ∴当截距不为零时,设切线方程为x+y=a, 又∵圆C:(x+1)2+(y-2)2=2, ∴圆心C(-1,2)到切线的距离等于圆的半径, 即, 解得:a=-1或a=3, 当截距为零时,设y=kx, 同理可得或, 则所求切线的方程为x+y+1=0或x+y-3=0或或. (2)∵切线PM与半径CM垂直, ∴|PM|2=|PC|2-|CM|2. ∴(x1+1)2+(y1-2)2-2=x12+y12. ∴2x1-4y1+3=0. ∴动点P的轨迹是直线2x-4y+3=0. ∴|PM|的最小值就是|PO|的最小值. 而|PO|的最小值为原点O到直线2x-4y+3=0的距离, ∴由,可得 故所求点P的坐标为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3-ax2+bx+c.
(Ⅰ)若函数y=f(x)的图象上存在点P,使P点处的切线与x轴平行,求实数a,b的关系式;
(Ⅱ)若函数f(x)在x=-1和x=3时取得极值,且其图象与x轴有且只有3个交点,求实数c的取值范围.
查看答案
manfen5.com 满分网如图,直三棱柱ABC-A1B1C1中,manfen5.com 满分网,∠BAC=90°,D为棱manfen5.com 满分网的中点.
(I)证明:A1D⊥平面ADC;
(II)求异面直线A1C与C1D所成角的大小;
(III)求平面A1CD与平面ABC所成二面角的大小(仅考虑锐角情况).
查看答案
某次演唱比赛,需要加试综合素质测试,每位参赛选手需回答三个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取三次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.
(I)求某选手在三次抽取中,只有第一次抽到的是艺术类题目的概率;
(II)求某选手抽到体育类题目数ξ的分布列和数学期望Eξ.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,manfen5.com 满分网
(1)求角C的大小;
(2)求△ABC的面积.
查看答案
已知函数f(x)的定义域为[-2,+∞),部分对应值如下左表,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,若两正数a,b满足f(2a+b)<1,则manfen5.com 满分网的取值范围是   
x-24
f(x)1-11

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.