确定真数的范围,利用对数函数的性质,直接推出函数的值域;再求出对数的真数大于0时的对称轴,利用复合函数的单调性求出单调区间.
【解析】
∵真数3-(x-1)2≤3,
∴lo[3-(x-1)2]≥log3=-1,即f(x)的值域是[-1,+∞).
又3-(x-1)2>0,得1-<x<1+,
∴x∈(1-,1]时,3-(x-1)2单调递增,从而f(x)单调递减;
x∈[1,1+)时,f(x)单调递增.
所以,f(x)的值域是[-1,+∞).
f(x)单调递减区间:(1-,1]
f(x)单调递增区间:[1,1+)