(I) 取AC中点F,连接MF,BF,证明四边形MNBF为平行四边形,则可证行线面平行的判定定理成立的条件.
(II)设A1到平面AB1C1的距离为h,从题设条件知道,本小题宜用等体积法求解.
(III)三棱柱ABC-A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,又点D是等腰直角三角形A1B1C1斜边A1B1的中点,故有C1D⊥平面A1B1BA,再由作二面角平面角的作法作出平面角,此角所在三角形是直角三角形,在此直角三角形中求该角的三角函数值再由值求角.
【解析】
(I)证明:取AC中点F,连接MF,BF,
在三角形AC1C中,MN∥C1C且,
∴MF∥BN且MF=BN
∴四边形MNBF为平行四边形
∴BF∥MN
∵BF⊂平面ABC
MN⊂平面ABC不成立
∴MN∥平面ABC(6分)
(II)设A1到平面AB1C1的距离为h,AA1⊥平面A1B1C1
∴
∴
∵,
∴
(III)三棱柱ABC-A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,
又点D是等腰直角三角形A1B1C1斜边A1B1的中点.
则C1D⊥A1B1
所以,C1D⊥平面A1B1BA;
平面A1B1BA内,过D作DE⊥AB1,垂足为E,连接C1E,则C1E⊥AB1;
∴∠C1ED是二面角,A1-AB1-C1的平面角,
在Rt
所以,二面角,A1-AB1-C1的大小为.(13分)