登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设x1,x2是函数的两个极值点,且|x1-x2|=2. (Ⅰ)证明:0<a≤1;...
设x
1
,x
2
是函数
的两个极值点,且|x
1
-x
2
|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:
.
(I)对函数求导可得,f′(x)=ax2+bx-a2,由题意可得x1,x2是方程的两根,根据方程的根与系数的关系可得x1+x2,x1•x2,而,代入可求 (II)由(I)可得b2=4a2-4a3,构造函数g(a)=4a2-4a3,利用导数知识求函数g(a)的单调区间及最值,而b2≤g(a)max,即可. 【解析】 (Ⅰ)对f(x)求导可得f'(x)=ax2+bx-a2(a>0).(2分) 因为x1,x2是f(x)的两个极值点,所以x1,x2是方程f'(x)=0的两个实根. 于是, 故, 即b2=4a2-4a3.(4分) 由b2≥0得4a2-4a3≥0,解得a≤1.a>0, 所以0<a≤1得证.(6分) (Ⅱ)由(Ⅰ)知b2=4a2-4a3,设g(a)=4a2-4a3, 则g'(a)=8a-12a2=4a(2-3a).(8分) 由g'(a)>0;g'(a)<0.(10分) 故g(a)在时取得最大值, 即, 所以.(13分)
复制答案
考点分析:
相关试题推荐
如图,已知定圆C:x
2
+(y-3)
2
=4,定直线m:x+3y+6=0,过A(-1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.
(Ⅰ)当l与m垂直时,求证:l过圆心C;
(Ⅱ)当
时,求直线l的方程;
(Ⅲ)设t=
,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.
查看答案
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击成绩互不影响.已知甲、乙射击命中环数的概率如表:
8环
9环
10环
甲
0.2
0.45
0.35
乙
0.25
0.4
0.35
(Ⅰ)若甲、乙两运动员各射击一次,求甲运动员击中8环且乙运动员击中9环的概率;
(Ⅱ)若甲、乙两运动员各自射击两次,求这4次射击中恰有3次击中9环以上(含9环)的概率.
查看答案
如图,ABCD是边长为2a的正方形,ABEF是矩形,且二面角C-AB-F是直二面角,AF=a,G是EF的中点.
(Ⅰ)求证:平面AGC⊥平面BGC;
(Ⅱ)求GB与平面AGC所成角的大小;
(Ⅲ)求二面角B-AC-G的大小.
查看答案
在等腰△ABC中,AB=AC,且
.
(Ⅰ)求cosA的值;
(Ⅱ)若
,求
.
查看答案
已知递增的等比数列{a
n
}满足a
2
+a
3
+a
4
=28,且a
3
+2是a
2
,a
4
的等差中项.
(Ⅰ)求数列{a
n
}的通项公式;
(Ⅱ)若b
n
=log
2
a
n+1
,求数列{b
n
}的前n项和S
n
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.