满分5 > 高中数学试题 >

已知以原点O为中心,为右焦点的双曲线C的离心率. (1)求双曲线C的标准方程及其...

已知以原点O为中心,manfen5.com 满分网为右焦点的双曲线C的离心率manfen5.com 满分网
(1)求双曲线C的标准方程及其渐近线方程;
(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.


manfen5.com 满分网
(1)设C的标准方程为(a>0,b>0),由题意知a=2,b=1,由此可求出C的标准方程和渐近线方程. (2)由题意知,点E(xE,yE)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此直线MN的方程为xEx+4yEy=4.设G,H分别是直线MN与渐近线x-2y=0及x+2y=0的交点,则,设MN与x轴的交战为Q,则,由此可求△OGH的面积. 【解析】 (1)设C的标准方程为(a>0,b>0), 则由题意知,, ∴a=2,b=1, ∴C的标准方程为. ∴C的渐近线方程为,即x-2y=0和x+2y=0. (2)由题意知,点E(xE,yE)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上, 因此有xEx+4yEy=4上,因此直线MN的方程为xEx+4yEy=4. 设G,H分别是直线MN与渐近线x-2y=0及x+2y=0的交点, 由方程组及,解得, 设MN与x轴的交战为Q,则在直线xEx+4yEy=4k,令y=0得, ∵xE2-4yE2=4, ∴ = =.
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=manfen5.com 满分网,点E是棱PB的中点.
(1)求直线AD与平面PBC的距离;
(2)若AD=manfen5.com 满分网,求二面角A-EC-D的平面角的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.
查看答案
在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:
(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;
(Ⅱ)甲、乙两单位的演出序号不相邻的概率.
查看答案
设函数f(x)=cos(x+manfen5.com 满分网π)+2manfen5.com 满分网,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=manfen5.com 满分网,求a的值.
查看答案
已知函数f(x)满足:manfen5.com 满分网,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.