本题考查的知识点是函数奇偶性及单调性,由f(x)为偶函数,我们可以根据偶函数的性质--偶函数的图象关于Y轴对称,判断出函数图象在Y轴左侧的情况,然后结合导数的意义,不难求出等式f(x)f′(x)>0的解集.
【解析】
由图可知:
f(x)在区间(0,+∞)上单调递增,
则在区间(0,+∞)上f'(x)>0.
又由f(x)为偶函数.
则f(x)在区间(-∞,0)上单调递减,
则在区间(-∞,0)上f'(x)<0.
由f(-1)=f(1)=0可得
在区间(-∞,-1)上f'(x)<0,f(x)>0.
在区间(-1,0)上f'(x)<0,f(x)<0.
在区间(0,1)上f'(x)>0,f(x)<0.
在区间(1,+∞)上f'(x)>0,f(x)>0.
故不等式f(x)f′(x)>0的解集为(-1,0)∪(1,+∞)
故选B