已知函数f(x)=x
3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m
2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
考点分析:
相关试题推荐
如图,长方体ABCD-A
1B
1C
1D
1中,E、P分别是BC、A
1D
1的中点,M、N分别是AE、CD
1的中点,AD=A
1A
1=a,Ab=2a,
(Ⅰ)求证:MN∥平面ADD
1A
1;
(Ⅱ)求二面角P-AE-D的大小.
查看答案
某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;
(Ⅱ)求这三人该课程考核都合格的概率(结果保留三位小数).
查看答案
已知A、B、C是△ABC三内角,向量
=(-1,
),
=(cosA,sinA),且
,
(Ⅰ)求角A
(Ⅱ)若
.
查看答案
数列{a
n}的前n项和记为S
n,a
1=t,a
n+1=2S
n+1(n∈N
*).
(1)当t为何值时,数列{a
n}为等比数列?
(2)在(1)的条件下,若等差数列{b
n}的前n项和T
n有最大值,且T
3=15,又a
1+b
1,a
2+b
2,a
3+b
3成等比数列,求T
n.
查看答案
m、n是空间两条不同直线,α、β是空间两条不同平面,下面有四个命题:
①m⊥α,n∥β,α∥β⇒m⊥n;
②m⊥n,α∥β,m⊥α⇒n∥β;
③m⊥n,α∥β,m∥α⇒n⊥β;
④m⊥α,m∥n,α∥β⇒n⊥β;
其中真命题的编号是
(写出所有真命题的编号).
查看答案