(1)把依据数列的通项公式把an和an+1代入△an=an+1-an,进而求得{△an}的通项公式.
(2)①把△an=an+1-an代入△an-an=2n,等式两边同时除以2n+1,得,进而证出数列为等差数列.
②通过Sn-2Sn即错位相减法,进而求得和Sn
解(1)依题△an=an+1-an,
∴,
(2)i)由△an-an=2n,即an+1-an-an=2n,即an+1=2an+2n,
∴,
∴.,
所以数列是以为首项,为公差的等差数列.
ii)由i)得,
∴,
∴Sn=a1+a2+a3+an=1•2+2•21++n•2n-1,①
∴2Sn=1•21+2•22++n•2n②
①-②得-Sn=1+2+22++2n-1-n•2n=,
∴Sn=n•2n-2n+1=(n-1)•2n+1.