满分5 > 高中数学试题 >

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是...

manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.
(Ⅰ)要证AM∥平面BDE,直线证明直线AM平行平面BDE内的直线OE即可,也可以利用空间直角坐标系,求出向量,在平面BDE内求出向量,证明二者共线,说明AM∥平面BDE, (Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS,说明∠BSA是二面角A-DF-B的平面角,然后求二面角A-DF-B的大小;也可以建立空间直角坐标系,求出,说明是平面DFB的法向量,求出平面DAF的法向量,然后利用数量积求解即可. 【解析】 方法一 (Ⅰ)记AC与BD的交点为O,连接OE, ∵O、M分别是AC、EF的中点,ACEF是矩形, ∴四边形AOEM是平行四边形, ∴AM∥OE ∵OE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDE (Ⅱ)在平面AFD中过A作AS⊥DF于S,连接BS, ∵AB⊥AF,AB⊥AD,AD∩AF=A, ∴AB⊥平面ADF, ∴AS是BS在平面ADF上的射影, 由三垂线定理得BS⊥DF ∴∠BSA是二面角A-DF-B的平面角 在Rt△ASB中, ∴, ∴二面角A-DF-B的大小为60° 方法二 (Ⅰ)建立如图所示的空间直角坐标系 设AC∩BD=N,连接NE, 则点N、E的坐标分别是(、(0,0,1), ∴=(, 又点A、M的坐标分别是 ()、( ∴=( ∴=且NE与AM不共线, ∴NE∥AM 又∵NE⊂平面BDE,AM⊄平面BDE, ∴AM∥平面BDF (Ⅱ)∵AF⊥AB,AB⊥AD,AF∩AD=A, ∴AB⊥平面ADF ∴为平面DAF的法向量 ∵=(•=0, ∴=(•=0得,∴NE为平面BDF的法向量 ∴cos<>= ∴的夹角是60° 即所求二面角A-DF-B的大小是60°
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求bc的最大值.
查看答案
已知数列{an}的前n项和为manfen5.com 满分网
(Ⅰ)求a1,a2
(Ⅱ)求证数列{an}是等比数列.
查看答案
设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(3,0)处(允许重复过此点),则质点不同的运动方法共有    种(用数字作答);若经过20次跳动质点落在点(16,0)处(允许重复过此点),则质点不同的运动方法共有    种(用数字作答). 查看答案
已知平面α⊥β,α∩β=l,P是空间一点,且P到α、β的距离分别是1、2,则点P到l的距离为    查看答案
若平面上三点A、B、C满足|manfen5.com 满分网|=3,|manfen5.com 满分网|=4,|manfen5.com 满分网|=5,则manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网的值等于     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.