满分5 > 高中数学试题 >

已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,...

已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1
(Ⅰ)若直线AP的斜率为k,且manfen5.com 满分网,求实数m的取值范围;
(Ⅱ)当manfen5.com 满分网时,△APQ的内心恰好是点M,求此双曲线的方程.

manfen5.com 满分网
(Ⅰ)设出直线AB的方程,表示出点M到直线AP的距离求得m-1的范围. (Ⅱ)设双曲线方程,由M和A求得|AM|,又因为M是△APQ的内心,M到AP的距离为1,所以∠MAP=45°,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1,求得P点坐标,代入椭圆方程求得b,求得双曲线方程. 【解析】 (Ⅰ)由条件得直线AP的方程y=k(x-1), 即kx-y-k=0. 因为点M到直线AP的距离为1, ∵, 即. ∵, ∴, 解得+1≤m≤3或--1≤m≤1--. ∴m的取值范围是. (Ⅱ)可设双曲线方程为, 由, 得. 又因为M是△APQ的内心,M到AP的距离为1,所以∠MAP=45°,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1因此,kAP=1,kAQ=-1(不妨设P在第一象限) 直线PQ方程为 直线AP的方程y=x-1, ∴解得P的坐标是(2+,1+),将P点坐标代入得, 所以所求双曲线方程为, 即.
复制答案
考点分析:
相关试题推荐
已知a为实数,f(x)=(x2-4)(x-a).
(1)求导数f′(x).
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.
(3)若f(x)在(-∞,-2)和[2,+∞]上都是递增的,求a的取值范围.
查看答案
某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.
(1)求5个工厂均选择星期日停电的概率;
(2)求至少有两个工厂选择同一天停电的概率.
查看答案
manfen5.com 满分网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=manfen5.com 满分网,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网,求bc的最大值.
查看答案
已知数列{an}的前n项和为manfen5.com 满分网
(Ⅰ)求a1,a2
(Ⅱ)求证数列{an}是等比数列.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.