满分5 > 高中数学试题 >

如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左...

如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).

manfen5.com 满分网
(Ⅰ)【解析】 由题意知随变量ξ为获得k等奖的折扣,则ξ的可能取值是50%,70%,90%,结合变量对应的事件和等可能事件的概率公式写出变量的分布列,做出期望. (2)根据第一问可以得到获得一等奖或二等奖的概率,根据小球从每个叉口落入左右两个管道的可能性是相等的.可以把获得一等奖或二等奖的人次看做符合二项分布,根据二项分布的概率公式得到结果. 【解析】 (Ⅰ)【解析】 随变量量ξ为获得k(k=1,2,3)等奖的折扣,则ξ的可能取值是50%,70%,90% P(ξ=50%)=,P(ξ=70%)=,P(ξ=90%)= ∴ξ的分布列为 ∴Εξ=×50%+×70%+90%=. (Ⅱ)【解析】 由(Ⅰ)可知,获得1等奖或2等奖的概率为+=. 由题意得η~(3,) 则P(η=2)=C32()2(1-)=.
复制答案
考点分析:
相关试题推荐
某射手每次射击击中目标的概率是manfen5.com 满分网,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标.另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.
查看答案
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为manfen5.com 满分网.甲、乙、丙三位同学每人购买了一瓶该饮料.
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;
(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.
查看答案
某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;
②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;
③每位参加者按A,B,C,D顺序作答,直至答题结束.
假设甲同学对问题A,B,C,D回答正确的概率依次为manfen5.com 满分网,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.
查看答案
如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电源能通过T1,T2,T3的概率都是P,电源能通过T4的概率是0.9,电源能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.
(Ⅰ)求P;
(Ⅱ)求电流能在M与N之间通过的概率.

manfen5.com 满分网 查看答案
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率;
(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.